Grain setting defect1, encoding a remorin protein, affects the grain setting in rice through regulating plasmodesmatal conductance.

نویسندگان

  • Jinshan Gui
  • Chang Liu
  • Junhui Shen
  • Laigeng Li
چکیده

Effective grain filling is one of the key determinants of grain setting in rice (Oryza sativa). Grain setting defect1 (GSD1), which encodes a putative remorin protein, was found to affect grain setting in rice. Investigation of the phenotype of a transfer DNA insertion mutant (gsd1-Dominant) with enhanced GSD1 expression revealed abnormalities including a reduced grain setting rate, accumulation of carbohydrates in leaves, and lower soluble sugar content in the phloem exudates. GSD1 was found to be specifically expressed in the plasma membrane and plasmodesmata (PD) of phloem companion cells. Experimental evidence suggests that the phenotype of the gsd1-Dominant mutant is caused by defects in the grain-filling process as a result of the impaired transport of carbohydrates from the photosynthetic site to the phloem. GSD1 functioned in affecting PD conductance by interacting with rice ACTIN1 in association with the PD callose binding protein1. Together, our results suggest that GSD1 may play a role in regulating photoassimilate translocation through the symplastic pathway to impact grain setting in rice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Removing Superior Spikelets on Grain Filling of Inferior Spikelets in Rice

Large-panicle rice cultivars often fail to reach their yield potential due to the poor grain filling of inferior spikelets (IS). Thus, it is important to determine the causes of poor IS grain filling. In this study, we attempted to identify whether inferior grain filling of large panicles is restricted by superior spikelets (SS) and their physiological mechanism. SS were removed from two homozy...

متن کامل

The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice

Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects includi...

متن کامل

OsSGL, a novel pleiotropic stress-related gene enhances grain length and yield in rice

Abiotic stress seriously affects the yield of rice (Oryza sativa L.). Grain yield in rice is multiplicatively determined by the number of panicles, number of grains per panicle, and grain weight. Here, we describe the molecular and functional characterization of STRESS_tolerance and GRAIN_LENGTH (OsSGL), a rice gene strongly up-regulated by a wide spectrum of abiotic stresses. OsSGL encodes a p...

متن کامل

Overexpression of SRS5 improves grain size of brassinosteroid-related dwarf mutants in rice (Oryza sativa L.)

Grain size is a trait that is important for rice (Oryza sativa L.) yield potential. Many genes regulating grain size have been identified, deepening our understanding of molecular mechanisms of grain size determination in rice. Previously, we cloned SMALL AND ROUND SEED 5 (SRS5) gene (encoding alpha-tubulin) from a small and round seed mutant and revealed that this gene regulates grain length i...

متن کامل

Rice grain quality: related properties and effective factors

Rice provides food for more than half of the world's population. Unlike other cereals used in the form of processed, rice is mostly consumed directly with removal of paddy and brown husks. Therefore, considering rice grain quality is one of the main factors in product marketability and consumption. Rice grain quality can be considerd and evaluated by assessment of four properties: physical, che...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 166 3  شماره 

صفحات  -

تاریخ انتشار 2014